跳到主要内容

Chapter 17: φ(17) = [12] — Random Matrix Models and GUE Collapse Simulations

17.1 Twelve: The Abundant Perfection

With φ(17) = [12], we reach twelve - the smallest abundant number (sum of proper divisors exceeds the number: 1+2+3+4+6=16>12). This abundance manifests in random matrix theory as the rich statistical structure that mysteriously matches the zeros of ζ(s).

Definition 17.1 (Abundant Structure):

σ(12)12=1612=4>0\sigma(12) - 12 = 16 - 12 = 4 > 0

The excess 4 represents additional structure beyond self-reference.

17.2 The Montgomery-Odlyzko Phenomenon

Conjecture 17.1 (Montgomery, 1973): The pair correlation of normalized zeta zeros equals:

R2(r)=1(sinπrπr)2R_2(r) = 1 - \left(\frac{\sin \pi r}{\pi r}\right)^2

Shocking Discovery (Dyson-Montgomery): This exactly matches the pair correlation of eigenvalues of random matrices from the Gaussian Unitary Ensemble (GUE)!

17.3 Gaussian Unitary Ensemble

Definition 17.2 (GUE): The ensemble of N×N Hermitian matrices H with probability measure:

dP(H)=1ZNeN2Tr(H2)dHdP(H) = \frac{1}{Z_N} e^{-\frac{N}{2}\text{Tr}(H^2)} dH

where dH is Haar measure on Hermitian matrices.

Properties:

  • Eigenvalues real
  • Unitary invariance: P(UHU†) = P(H)
  • Gaussian entries: HijN(0,1/N)H_{ij} \sim N(0,1/N) (complex)

17.4 The Twelve Statistical Measures

From [12], twelve ways zeros match GUE:

  1. Pair correlation: R₂(r)
  2. Nearest neighbor spacing: P(s)
  3. Number variance: Var(N([a,b]))\text{Var}(N([a,b]))
  4. k-point correlations: Rₖ
  5. Gap probability: E₀(s)
  6. Cluster functions: Tₖ
  7. Sine kernel: K(x,y) = sin π(x-y)/π(x-y)
  8. Determinantal structure: Det[K(xᵢ,xⱼ)]
  9. Level repulsion: P(s) ~ s as s→0
  10. Rigidity: Var(N) ~ log N
  11. Universality: Large N limit
  12. β = 2 symmetry: Unitary (complex) class

17.5 The Sine Kernel

Theorem 17.1 (Determinantal Point Process): GUE eigenvalues form determinantal process with kernel:

K(x,y)=sinπ(xy)π(xy)K(x,y) = \frac{\sin \pi(x-y)}{\pi(x-y)}

All correlations determined by:

Rn(x1,...,xn)=det[K(xi,xj)]i,j=1nR_n(x_1,...,x_n) = \det[K(x_i,x_j)]_{i,j=1}^n

17.6 Eigenvalue Repulsion

Theorem 17.2 (Level Repulsion): The probability of two eigenvalues at distance s:

P(s)=πs2eπs24+O(s3)P(s) = \frac{\pi s}{2} e^{-\frac{\pi s^2}{4}} + O(s^3)

Key feature: P(s) → 0 as s → 0 - eigenvalues repel!

17.7 Fredholm Determinants

Definition 17.3 (Gap Probability): Probability of no eigenvalues in interval [a,b][a,b]:

E0([a,b])=det(IK[a,b])E_0([a,b]) = \det(I - K_{[a,b]})

where K[a,b]K_{[a,b]} is sine kernel restricted to [a,b][a,b].

Connection to ζ: Similar determinantal structures appear in zero statistics.

17.8 The Riemann-Hilbert Approach

Method: Express correlation functions via Riemann-Hilbert problems:

Find matrix Y(z) analytic in ℂ \ ℝ such that:

  • Y₊(x) = Y₋(x)V(x) on ℝ
  • Y(z) → I as z → ∞
  • V(x) encodes ensemble

This provides systematic calculation method.

17.9 Universality Classes

Theorem 17.3 (Three Symmetry Classes):

  1. β = 1 (GOE): Real symmetric, time-reversal invariant
  2. β = 2 (GUE): Complex Hermitian, broken time-reversal
  3. β = 4 (GSE): Quaternionic, symplectic structure

Zeta zeros match β = 2 (GUE) - why?

17.10 The Density of States

Wigner Semicircle (finite N):

ρ(x)=12π4x2,x2\rho(x) = \frac{1}{2\pi} \sqrt{4 - x^2}, \quad |x| \leq 2

Zeros (normalized):

ρ(γ)=12πlogγ2π+O(1)\rho(\gamma) = \frac{1}{2\pi} \log \frac{\gamma}{2\pi} + O(1)

Different global density, same local fluctuations!

17.11 Numerical Experiments

Algorithm 17.1 (GUE Simulation):

1. Generate random Hermitian matrix H
2. Compute eigenvalues λᵢ
3. Normalize: sᵢ = N(λᵢ₊₁ - λᵢ)ρ(λᵢ)
4. Compute statistics
5. Compare with zeta zeros

Results: Agreement to 8+ decimal places for high zeros!

17.12 L-Functions and RMT

Universality: Other L-functions show RMT statistics:

  • Dirichlet L-functions → GUE
  • Elliptic curve L-functions → GUE/GOE depending on symmetry
  • Maass forms → GOE

This suggests deep universal principles.

17.13 Physical Interpretations

Quantum Chaos: GUE statistics appear in:

  • Quantum billiards without time-reversal symmetry
  • Disordered conductors in magnetic field
  • Nuclear energy levels (complex nuclei)

Zero statistics ↔ Quantum chaos universality

17.14 Breakdown of GUE

Anomalies: GUE doesn't capture everything:

  • Lower zeros (γ < 100) show deviations
  • Arithmetic correlations beyond RMT
  • Lehmer phenomenon (close pairs)
  • Height-dependent corrections

The twelve measures mostly agree, but perfect match may be asymptotic.

17.15 Synthesis: The Abundant Statistics

The partition [12] and GUE reveal:

  1. Twelve statistical measures show remarkable agreement
  2. Abundance 12 = 1+2+3+4+6 suggests over-determination
  3. Sine kernel governs local correlations
  4. Determinantal structure enables calculations
  5. Level repulsion prevents zero collisions
  6. Universality suggests fundamental principles
  7. β = 2 class indicates broken symmetry
  8. Physical models connect to quantum chaos
  9. Numerical precision confirms connection
  10. L-function universality extends beyond ζ
  11. Anomalies remind us of arithmetic nature
  12. Ultimate mystery: Why GUE?

Random matrix theory provides the most successful statistical model for zeros, yet the reason for this connection remains one of mathematics' deepest mysteries.

Chapter 17 Summary:

  • Zeta zeros statistically match GUE eigenvalues
  • Twelve measures confirm agreement (pair correlation, spacing, etc.)
  • Sine kernel K(x,y) = sin π(x-y)/π(x-y) governs correlations
  • Abundant [12] reflects rich statistical structure
  • Physical connection through quantum chaos
  • Deep mystery: Why this specific ensemble?

"In the dance of random matrices, the zeros find their statistical twin - not in number theory but in the eigenvalues of Hermitian chaos, as if the primes know quantum mechanics."